Latent feature reconstruction for unsupervised anomaly detection

نویسندگان

چکیده

Abstract Anomalies (or outliers) indicate a minority of data items that are quite different from the majority (inliers) dataset in certain aspect. Unsupervised anomaly detection (UAD) is an important but not yet extensively studied research topic. Recent deep learning based methods exploit reconstruction gap between inliers and outliers to discriminate them. However, it observed often decreases rapidly as training process goes. And there no reasonable way set stop point. To support effective UAD, we propose new UAD framework by introducing Latent Feature Reconstruction (LFR) layer can be applied recent methods. The LFR acts regularizer constrain latent features low-rank subspace which reconstructed well while cannot. We develop two implementing proposed with autoencoder architecture geometric transformation scheme. Experiments on five benchmarks show our achieve state-of-the-art performance most cases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised Anomaly Detection

This paper describes work on the detection of anomalous material in text. We show several variants of an automatic technique for identifying an 'unusual' segment within a document, and consider texts which are unusual because of author, genre [Biber, 1998], topic or emotional tone. We evaluate the technique using many experiments over large document collections, created to contain randomly inse...

متن کامل

A Bayesian Ensemble for Unsupervised Anomaly Detection

Methods for unsupervised anomaly detection suffer from the fact that the data is unlabeled, making it difficult to assess the optimality of detection algorithms. Ensemble learning has shown exceptional results in classification and clustering problems, but has not seen as much research in the context of outlier detection. Existing methods focus on combining output scores of individual detectors...

متن کامل

Unsupervised Clustering Approach for Network Anomaly Detection

This paper describes the advantages of using the anomaly detection approach over the misuse detection technique in detecting unknown network intrusions or attacks. It also investigates the performance of various clustering algorithms when applied to anomaly detection. Five different clustering algorithms: k-Means, improved k-Means, k-Medoids, EM clustering and distance-based outlier detection a...

متن کامل

Anomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors

Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...

متن کامل

Feature-based anomaly detection

A feature-based approach for detecting anomalies in spectral, spatial, temporal, and other domains is described. When the frequency of occurrence is small relative to the background, anomalies such as man-made objects in natural image backgrounds do not form their own clusters, but are instead assigned the nearest background cluster, becoming an outlier (statistical anomaly) in that cluster. Ou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Intelligence

سال: 2023

ISSN: ['0924-669X', '1573-7497']

DOI: https://doi.org/10.1007/s10489-023-04767-2